Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach
نویسنده
چکیده
We obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation ut + 6uux + ǫ uxxx = 0, u(x, t = 0, ǫ) = u0(x), for ǫ small, near the point of gradient catastrophe (xc, tc) for the solution of the dispersionless equation ut + 6uux = 0. The sub-leading term in this expansion is described by the smooth solution of a fourth order ODE, which is a higher order analogue to the Painlevé I equation. This is in accordance with a conjecture of Dubrovin, suggesting that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert problem for the KdV equation, we are able to prove the asymptotic expansion rigorously in a double scaling limit.
منابع مشابه
Solitonic Asymptotics for the Korteweg-de Vries Equation in the Small Dispersion Limit
We study the small dispersion limit for the Korteweg-de Vries (KdV) equation ut + 6uux + ǫ uxxx = 0 in a critical scaling regime where x approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using the Riemann-Hilbert approach, we obtain an asymptotic expansion for the KdV solution in a double scaling limit, which shows that the oscillations degenerate to ...
متن کاملRiemann-Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type
We study the Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion and with monotonically increasing initial data using the Riemann-Hilbert (RH) approach. The solution of the Cauchy problem, in the zero dispersion limit, is obtained using the steepest descent method for oscillatory Riemann-Hilbert problems. The asymptotic solution is completely described by a scalar func...
متن کاملAn extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation.
This paper extends the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou in a critical new way. We present, in particular, an algorithm, to obtain the support of the Riemann-Hilbert problem for leading asymptotics. Applying this extended method to small dispersion KdV (Korteweg-de Vries) equation, we (i) recover the variational formulation of P. D. Lax and C. D. ...
متن کاملNumerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...
متن کاملPainlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg - de Vries equation in the small dispersion limit
Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small dispersion limit Abstract In the small dispersion limit, solutions to the Korteweg-de Vries equation develop an interval of fast oscillations after a certain time. We obtain a universal asymptotic expansion for the Korteweg-de Vries solution near the leading edge of the oscillat...
متن کامل